Friday, January 20, 2017

Field Recording

Last fall, the last time my Trends in Modern Sound Design class met was to go on a field recording field trip to 1000 Steps Beach in Orange County.  The beach is about 15 minutes from campus down a steep stairway (about 232 steps - not that I was counting) from the Pacific Coast Highway.  Once you're on the beach, the road is inaudible, and at 9am, there's little human activity on the beach.  So, on the Monday of Finals Week, we hauled a bunch of gear down to the beach to make some field recordings.

Earlier in the quarter, we spent some time talking about how to strategize the recording session for optimal content collection and editing speed.  We first talked about what kinds of recordings we'd like to make. We settled on these formats:

* close-miked sound effects (water, animals, etc.)
* binaural ambience
* spaced-omni pair ambience
* coincident pair (XY) ambience
* omni ambience
* 5.1 ambience
* M/S ambience
* spaced-cardioid pair ambience

When we looked at the list of formats, it became apparent that we needed three teams of students. So, I divided the class into three teams.

  • Ben, Ning, and Mingna would together handle a system that included a SoundField ST-350 microphone and a pair of spaced AKG 414 microphones. The ST-350 sends four channels (ambisonic WXYZ), but can be decoded to omni, coincident pair, 5.1, and M/S. The AKG 414 microphones have an adjustable polar pattern, so the team could choose a spaced-pair omni or cardioid. Those six channels (WXYZ & two 414) fed into a Zoom F8 recorder.  They would set up on the beach and record ambience.  

  • Andrea and Andrew would together handle the shotgun mic for close-miked sounds.  They mounted a Sennheiser MKH 416 on a boom pole, recording onto a Zoom H6. Andrea handled the boom.  Andrew handled the recorder and monitored on headphones.  They were tethered by cable.

  • Jordan handled the binaural recording by himself.  He wore a custom-made binaural ball-cap, with the omni elements sewn into the headband at the ear positions.  Those mics fed a Zoom H4.  

We met on campus at 8:30 and caravanned to the beach.  Once we were on the beach, we found a rocky plateau sufficiently far up the beach (the tide was slowly coming in) to make an impromptu camp.  Each team was responsible for collecting all of the gear (including stands, cables, batteries, etc.) they'd need, so once we got to the beach, the teams started setting up.  Teams shotgun and binaural were first out of the gate, heading south to a rocky water cave with lots of great water-against-rock sounds.  Team multi-channel took longer to set up.

The recording session itself was lots of fun.  Team shotgun enjoyed scrambling over rocks to get some great sounds of water lapping against the rocks, but their attempts at wildlife was less than successful.

Team multichannel spent some time adjusting their microphone spacing and distance from the surf, but got some excellent recordings of surf.

Team binaural (Jordan) took had a much-needed opportunity to have some quiet communion with nature after a particularly busy quarter (and an emotionally-taxing production).

As the session wound to a close, the teams started packing up, and Ning found herself in the wrong place at the wrong time with respect to the tide.  

Ultimately, we collected some great recordings!  After the session, the students went back into the studio to edit and render the recordings.  Teams binaural and shotgun only had to create two and one-track recordings to render, but team multi-channel needed to use some specialized software in the Meyer Sound Design Studio to render their recordings into all of the requisite formats.  I created a Google Doc that automatically turned the recording information that the teams entered into the appropriate data formats for uploading, both to our private sound effects server and to, where we've put our recordings for public access.  We're still working on mastering and uploading all the audio, but once it's done, I'll post a link on this blog!

Wednesday, January 11, 2017

Disneyland Field Trip

The 2nd of December marked the last day of the quarter for us, but it was also the awaited day of our Disneyland visit - what a way to end the quarter where dreams come true!

Jerry Tomlinson, hiring manager of technical services were our first point of contact after a 17 mile morning drive to Disneyland Park. Technical Services at Disneyland involves technicians for all live events (stage shows, marching bands, parades, etc.), and Jerry is constantly on the lookout for talented technicians to bring onto the Disney team. His enthusiasm was infectious, but he was also extremely detailed in the operations of park as we headed straight to the Technical Services building, walking past rows of neatly pressed crew uniforms and costumes, and finally to their main equipment shop.

It was fascinating to see a central shop area that supports all equipment for the entire Disneyland. The efficiency and level of precision in equipment preparation was definitely an eye-opener. Each request for equipment is submitted to the shop, checked and prepared by the full-time technicians before they are sent out to the designated location. This speeds up the pull process but most importantly keeps inventory in check. I can definitely see how having a dedicated shop like this would have solved the issues I have encountered in professional settings elsewhere.

As we walk past a few rehearsal stages, we come across one for the Disney Performing Arts (DPA) programme. The DPA programme is a series of workshops for youths to learn vocal, instrumental performance, and dance to eventually perform in front of Disney Park guests at the end of the series. A team of experienced music recording engineers work with each group to mix and record the ensemble, and each group is presented with a USB drive containing their recording upon completion of the clinic.

A tour in Disneyland will never be complete without the next character. The theatrical stage showing Mickey and the Magical Map is a heavily automated production, with features such as Mickey’s trap door and moving set pieces. Jerry shared an interesting observation about the high occurrence of automation technicians originating from being sound technicians. We chatted about this and attributed to the programming of automation being extremely detailed and layered - possibly similar to programming sound in this digital age. 
Photos were off-limits in the backstage area, but we were finally allowed to take pictures upon entering the public area! (yay!) We watched the second half of “Beauty And The Beast” at the Royal Theatre, accompanied by a pianist similarly dressed in a simple yet elegant period costume. Kudos again to the Disney experience! We also observed the stage manager and sound technician calling and operating the show from a little corner behind the audience. The stage manager had a fairytale like music stand and an iPad control of was housed inside a treasure box. After the show ended, everything disappeared into the treasure box (just close the lid!) leaving only the beautiful music stand, clean and unobtrusive.  

We then followed Mary Poppins and the marching band to the area in front of the castle and watched their performance. Jerry explained that  each show has its own “zone” of speakers. This performance of Mary Poppins was isolated to the area in front of the castle. The system was designed to “draw people in” to the direction of the show but also not to spill too much to the surrounding areas. Jerry also explained that only the trumpeter and narrator were miked, and everything else was acoustic. This was when I asked about where the radiomic antennas, the sound console, and the sound operator were. To my astonishment, he explained that antennas were well hidden inside street signs, in trees and other structures all around the park and managed by a central system in Audio Central. This is done so that the RF signal from wireless microphones are never isolated to one pair of antennas only, providing redundancy and flexibility; there is always the freedom to stage a performance in a different location just by some re-programming at Audio Central (which we’d visit later in the tour). Imagine the amount of manual labor required for the changeover if this had been a conventional setup! 

Microphone levels and individual EQs are pre-programmed at Audio Central and cue changes are cued by a stage manager or technician who follows the performers. Fine adjustments, if required, are communicated to Audio Central via walkie-talkies so that changes can be made real time without the need of having a sound console and sound operator on the ground. I felt this definitely added to the “magical” experience at Disneyland.

Then came the most important highlight of the entire day - Audio Central. This is truly the mastermind, the brain, the “air traffic control” of everything audio around Disneyland. The most crucial software we were introduced to was the Disneyland Entertainment Control System.

We talked about how during parades, each parade truck has its own assigned show music and playback is from a SD card housed within within truck itself but Audio Central is able to override anytime if the truck system failed. The location of each parade truck is visible on the map in Audio Central and color coded according to which music it was playing. The speakers surrounding each parade will automatically crossfade between the background music to the parade music once the parade truck is within its zone. The speaker icons on the screen display a color change accordingly.

With some research on the internet, I found that this was a system developed by Don Dorsey exclusively for Disneyland. According to a guest post on

“The opening of California Adventure and the birth of the Eureka! Parade gave Dorsey the chance to implement a newly enhanced version of DECS. This technology represents a major advance in parade show control. Back in 1980, if Dorsey wanted to change something, he had to go into each of the 20 zones and change every individual cue line manually, a task that took hours. In 2001, DECS uses an “interpretation” feature, which allows a change to be written into one zone and immediately “expanded” to all 33 zones. “You can now rewrite the entire script in the amount of time it takes the parade to turn around,” Dorsey notes. “We finally have a system with the capability to control complicated parades and respond quickly to change requests from the creative team.”

It was still fascinating to find out so much detail was put into the show control system to ensure every single element is fully controllable yet can be overridden on the fly to adapt to changes on the ground transparent to the guests. This is critical to a high accountability venue where the going down of a single performance might trigger multitudes of complaints or loss in revenue and faith in Disney. 

After lunch we took a nice walk over to Disney California Adventure Park. Here we visited Cars Land where Jerry shared about Walt Disney’s attention to detail and every landmark or structure was built exactly as what it would have looked like in the animations. 

We then took a breathtaking walk along the Broadwalk, visited the control room of the World of Color, and eventually caught the parade of the new Disney princess Elena of Avalor. And then of  course Jordan had to give in to the lure of the churros kiosk along the way!

We finally got to the other main highlight of the day - Frozen the Musical. We walked through the backstage of the Hyperion Theatre, past the crew and actors getting ready for the show. Jerry explained that it was a video heavy show - two huge panels of LED screens join at the middle of  upstage centre to form the backdrop of most of the content of the show while the rest of the proscenium was covered with projection. The LED wall opens down the middle during moments of the show like a door for entrances and exits from upstage centre. Three bigger-than-life doors fly in at different moments of the show, one of which will be used in the famous Ana and Elsa song “Do You Want To Build A Snowman”. There was a giant intricate ice shaped chandelier above the audience very cleverly masked by bright auditorium lighting preshow. Ice spikes that were to be used for Elsa’s ice castle scene were wonderfully hidden between the gaps of the stage floor — the audience would never have guessed until they get a pleasant surprise during the scene.

The most impressive elements in the production was the LED wall and video projection. These set the scene for most of the show and freely transformed between scenes with realistic animation. The sound design by Broken Chord Collective definitely helped make the show. Together with the projection design of the show, it was a fascinating journey into the world of Frozen and definitely a magical experience for the many children and families that were watching.

We had a wonderful time seeing how dreams  come true and it definitely made some of our own dreams come true too.